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CHAPTER 1

Introduction

1.1 What is protlearn?

protlearn is a feature extraction tool for protein sequences. It is a freely available Python package that allows the user
to efficiently extract amino acid sequence features from proteins or peptides, which can then be used for a variety of
downstream machine learning tasks.
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1.2 Package Contents

protlearn is currenty comprised of three main modules:

• preprocessing

• feature extraction

• dimensionality reduction

The Preprocessing section allows the user to prepare the datasets according to specific needs, such as filtering out
sequences containing unnatural amino acids or converting the alphabetical strings to integers. The Feature Extraction
section can then be used to compute amino acid sequence features from the dataset, such as amino acid composition or
AAIndex-based physicochemical properties. In total, protlearn currently provides 21 such features. Finally, Dimen-
sionality Reduction & Feature Selection methods are provided to reduce the dimensionality of the computed features,
which reduces redundancy and alleviates the computational burden for the classifiers.

1.3 Input Formats

protlearn was designed to handle both single and multiple sequence inputs in the following formats:

• string (single)

• .fasta (single)

• list of strings (multiple)

• .fasta (multiple)
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1.4 Installing protlearn

protlearn is currently supported and tested on Python 3.6, 3.7, and 3.8 and can be installed and upgraded using the
following terminal commands:

1.4.1 PyPI

pip install protlearn
pip install --upgrade protlearn

1.4.2 Conda

conda install -c conda-forge protlearn
conda update protlearn

1.4. Installing protlearn 3
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CHAPTER 2

Preprocessing

2.1 integer_encode

protlearn.preprocessing.integer_encode(X, *, padding=False)

Encode amino acids as integers.

This function converts amino acids into their corresponding integers based on the specified notation, starting at 1.
Zeros are reserved for optional padding. This is particularly useful for preparing a sequence-based model such as a
long short-term memory (LSTM) or a gated recurrent unit (GRU).

2.1.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

padding: bool, default=False False : sequences are returned in their original lengths True : sequences will be padded
with zeros to the length of the longest sequence in the dataset

2.1.2 Returns

enc: ndarray of shape (n_samples,) if padding=False or (n_samples, max_len) if padding=True Contains the
integer-encoded amino acid sequences.

amino_acids: amino acid order of enc array This serves as a lookup for the encoded sequences.

2.1.3 Examples

>>> from protlearn.preprocessing import integer_encode
>>> seq = 'ARKLYPGPGEERNK'
>>> enc, aa = integer_encode(seq)

(continues on next page)
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(continued from previous page)

>>> enc
array([ 1, 15, 9, 10, 20, 13, 6, 13, 6, 4, 4, 15, 12, 9])
>>> aa
'ACDEFGHIKLMNPQRSTVWY'

Below is an example using multiple sequences and padding. If padding=True, sequences of unequal lengths will
be posteriorly padded with zeros to the length of the longest sequence in the dataset.

>>> from protlearn.preprocessing import integer_encode
>>> seqs = ['ARKLY', 'EERNPAA', 'QEPGPGLLLK']
>>> enc, aa = integer_encode(seqs, padding=True)
>>> enc
array([[ 1, 15, 9, 10, 20, 0, 0, 0, 0, 0],

[ 4, 4, 15, 12, 13, 1, 1, 0, 0, 0],
[14, 4, 13, 6, 13, 6, 10, 10, 10, 9]])

>>> aa
'ACDEFGHIKLMNPQRSTVWY'

2.2 onehot_encode

protlearn.preprocessing.onehot_encode(X)

One-hot encoding.

This function converts amino acid sequences into their corresponding one-hot encoded representations. Sequences
will be padded with zeros to the maximum sequence length so that the final output has the shape of (n_samples,
maximum_length, 20), where 20 is the number of natural amino acids.

2.2.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

2.2.2 Returns

enc: ndarray of shape (n_samples, max_len, 20) Contains the one-hot-encoded amino acid sequences.

2.2.3 Examples

>>> from protlearn.preprocessing import onehot_encode
>>> seqs = ['ARKLY', 'EERNPAA', 'QEPGPGLLLK']
>>> enc = onehot_encode(seqs, padding=True)
>>> enc.shape
(3, 10, 20)
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2.3 remove_duplicates

protlearn.preprocessing.remove_duplicates(X, *, verbose=1)

Remove duplicate sequences.

This function detects and removes duplicate sequences from the dataset.

2.3.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

verbose: int, default=1 0 : no information on duplicates is printed 1 : prints number of duplicates removed 2 : prints
duplicate sequences and number of times present

2.3.2 Returns

Y: list of length n_samples minus the number of duplicates Dataset containing only unique sequences.

2.3.3 Examples

>>> from protlearn.preprocessing import remove_duplicates
>>> seqs = ['ARKLY', 'EERNPAA', 'ARKLY', 'QEPGPGLLLK']
>>> seqs = remove_duplicates(seqs)
>>> seqs
['EERNPAA', 'QEPGPGLLLK', 'ARKLY']

2.4 remove_unnatural

protlearn.preprocessing.remove_unnatural(X)

Remove sequences containing unnatural amino acids.

This function removes sequences containing amino acids other than the 20 natural ones.

2.4.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

2.4.2 Returns

Y: list of length n_samples minus the number of sequences containing unnatural amino acids Dataset contain-
ing only sequences comprised of natural amino acids.

2.3. remove_duplicates 7
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2.4.3 Examples

>>> from protlearn.preprocessing import remove_unnatural
>>> seqs = ['ARKLY', 'EERNPJAB', 'QEPGPGLLLK']
>>> seqs = remove_unnatural(seqs)
>>> seqs
['ARKLY', 'QEPGPGLLLK']
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CHAPTER 3

Feature Extraction

3.1 length

protlearn.features.length(X, *, method='int')

Sequence length in amino acids.

The number of amino acids that a protein or peptide is comprised of will be counted and returned as either an integer
(single sequence), array of integers, or a one-hot-encoded array.

3.1.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

method: string, default=’int’ ‘int’ : interval data ‘ohe’ : one-hot encoded data

3.1.2 Returns

arr: int or ndarray of shape (n_samples, 1) or (n_samples, n_unique_lengths) Array containing sequence
lengths.

3.1.3 Examples

>>> from protlearn.features import length
>>> seqs = ['ARKLY', 'EERKPGL', 'LLYPGP']
>>> l_int = length(seqs)
>>> l_int
array([[5], [7], [6]])
>>> l_ohe = length(seqs, method='ohe')
array([[1., 0., 0.],

(continues on next page)
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[0., 0., 1.],
[0., 1., 0.]])

3.2 aac

protlearn.features.aac(X, *, method='relative', remove_zero_cols=False, start=1,
→˓end=None)

Amino acid composition.

This function returns the frequency of amino acids for each sequence in the dataset.

aac is calculated as follows:

𝑎𝑎𝑐(𝑖) =
𝑛𝑖

𝑁

where i denotes the 20 amino acid residues, ni is the frequency of each residue i, and N is the total number of residues
in the sequence.

3.2.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

method: string, default=’relative’ ‘absolute’ : absolute amino acid composition ‘relative’ : relative amino acid com-
position

remove_zero_cols [bool, default=False] If true, columns containing only zeros will be deleted.

start: int, default=1 Determines the starting point of the amino acid sequence. This number is based on one-based
indexing.

end: int, default=None Determines the end point of the amino acid sequence. Similarly to start, this number is based
on one-based indexing.

3.2.2 Returns

arr: ndarray of shape (n_samples, n_unique_amino_acids) Array containing the amino acid composition.

amino_acids: string Corresponds to the columns (amino acids) in arr.

3.2.3 Examples

>>> from protlearn.features import aac
>>> seqs = ['ARKLY', 'EERKPGL']
>>> comp, aa = aac(seqs, remove_zero_cols=True)
>>> comp
array([[0.2 , 0. , 0. , 0.2 , 0.2 ,

0. , 0.2 , 0.2 ],
[0. , 0.28571429, 0.14285714, 0.14285714, 0.14285714,
0.14285714, 0.14285714, 0. ]])

>>> aa
'AEGKLPRY'

10 Chapter 3. Feature Extraction



protlearn

Note that columns containing all zeros have been removed from the final array.

3.3 aaindex1

protlearn.features.aaindex1(X, *, standardize='none', start=1, end=None)

AAIndex1-based physicochemical properties.

AAindex1 ver.9.2 (release Feb, 2017) is a set of 20 numerical values representing various physicochemical and bio-
logical properties of amino acids. Currently, it contains 566 indices, of which 553 contain no NaNs. The indices will
be collected for each amino acid in the sequence, then averaged across the sequence.

aaindex1 is calculated as follows:

𝑎𝑎𝑖𝑛𝑑𝑒𝑥1(𝑖) =

∑︀𝑁
𝑛=1 𝐴𝐴𝑖𝑛𝑑𝑒𝑥𝑖(𝑎𝑎𝑛)

𝑁

where i denotes the 566 AAIndex1 indices, aan denotes the amino acid at position n, and N is the total number of
residues in the sequence.

3.3.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

standardize: string, default=’none’ ‘none’ : unstandardized index matrix will be returned ‘zscore’ : index matrix is
standardized to have a mean of 0 and standard deviation of 1. ‘minmax’ : index matrix is normalized to have a
range of [0, 1].

start: int, default=1 Determines the starting point of the amino acid sequence. This number is based on one-based
indexing.

end: int, default=None Determines the end point of the amino acid sequence. Similarly to start, this number is based
on one-based indexing.

3.3.2 Returns

arr: ndarray of shape (n_samples, 553) Array containing the AAIndex1 physicochemical properties.

desc: list of length 553 Corresponds to the columns (AAIndices) in arr.

3.3.3 References

• Nakai, K., Kidera, A., and Kanehisa, M.; Cluster analysis of amino acid indices for prediction of protein struc-
ture and function. Protein Eng. 2, 93-100 (1988). [PMID:3244698]

• Tomii, K. and Kanehisa, M.; Analysis of amino acid indices and mutation matrices for sequence comparison
and structure prediction of proteins. Protein Eng. 9, 27-36 (1996). [PMID:9053899]

• Kawashima, S., Ogata, H., and Kanehisa, M.; AAindex: amino acid index database. Nucleic Acids Res. 27,
368-369 (1999). [PMID:9847231]

• Kawashima, S. and Kanehisa, M.; AAindex: amino acid index database. Nucleic Acids Res. 28, 374 (2000).
[PMID:10592278]

• Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T., and Kanehisa, M.; AAindex:
amino acid index database, progress report 2008. Nucleic Acids Res. 36, D202-D205 (2008). [PMID:17998252]
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3.3.4 Examples

>>> from protlearn.features import aaindex1
>>> seqs = ['ARKLY', 'EERKPGL']
>>> aaind, inds = aaindex1(seqs, standardize='zscore')
>>> aaind.shape
(2, 553)
>>> len(inds)
553

3.4 ngram

protlearn.features.ngram(X, *, n=2, method='relative', start=1, end=None)

N-gram composition.

This function computes the di- or tripeptide composition of amino acid sequences. Therefore, the function parameter
n can only take on the arguments 2 and 3 - otherwise, it will raise a ValueError.

ngram is calculated as follows:

𝑑𝑖(𝑖, 𝑗) =
𝑁𝑖𝑗

𝑁 − 1
𝑖, 𝑗 = 1, 2, ..., 20.

𝑡𝑟𝑖(𝑖, 𝑗, 𝑘) =
𝑁𝑖𝑗𝑘

𝑁 − 2
𝑖, 𝑗, 𝑘 = 1, 2, ..., 20.

where N ij and N ijk denote the di- and tripeptides comprised by amino acids ij and ijk, respectively. N denotes the total
sequence length.

3.4.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

n: int, default=2 Integer denoting the desired n-gram composition. 2 : dipeptide composition 3 : tripepitde compo-
sition

method: string, default=’relative’ ‘absolute’: absolute n-gram composition ‘relative’: relative n-gram composition

start: int, default=1 Determines the starting point of the amino acid sequence. This number is based on one-based
indexing.

end: int, default=None Determines the end point of the amino acid sequence. Similarly to start, this number is based
on one-based indexing.

3.4.2 Returns

arr: ndarray of shape (n_samples, n_combinations) Depending on n, the returned array will be of size: -
(n_samples, 400) for dipeptide composition - (n_samples, 8000) for tripeptide composition

n-grams: list of length 400 or 8000 List of n-grams corresponding to columns in arr.

12 Chapter 3. Feature Extraction



protlearn

3.4.3 Examples

>>> from protlearn.features import ngram
>>> seqs = ['ARKLY', 'EERKPGL']
>>> di, ngrams = ngram(seqs, n=2)
>>> di.shape
(2, 400)
>>> len(ngrams)
400
>>> tri, ngrams = ngram(seqs, n=3)
>>> tri.shape
(2, 8000)
>>> len(ngrams)
8000

3.5 entropy

protlearn.features.entropy(X, *, standardize='none', start=1, end=None)

Shannon entropy.

This function computes the Shannon entropy for each sequence in the dataset as follows:

𝐻(𝑋) = −
20∑︁
𝑖=1

𝑃 (𝑥𝑖)𝑙𝑜𝑔2𝑃 (𝑥𝑖)

where i denotes the 20 amino acids and P(xi) denotes the probability of a given amino acid in the sequence.

3.5.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

standardize: string, default=’none’ ‘none’ : unstandardized matrix will be returned ‘zscore’ : matrix is standardized
to have a mean of 0 and standard deviation of 1. ‘minmax’ : matrix is normalized to have a range of [0, 1].

start: int, default=1 Determines the starting point of the amino acid sequence. This number is based on one-based
indexing.

end: int, default=None Determines the end point of the amino acid sequence. Similarly to start, this number is based
on one-based indexing.

3.5.2 Returns

arr: ndarray of shape (n_samples, 1) if len(X) > 1, otherwise float Array containing Shannon entropy values for
each sequence.

3.5.3 Examples

3.5. entropy 13
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>>> from protlearn.features import entropy
>>> seqs = ['ARKLY', 'EERKPGL', 'AAAAAALY']
>>> ent = entropy(seqs)
>>> ent
array([[2.32192809], [2.52164064], [0.64020643]])

3.6 posrich

protlearn.features.posrich(X, *, position, aminoacid)

Position-specific amino acids.

This function returns a binary vector or matrix in which ones indicate the presence of the given amino acid(s) at the
specified position(s), and zeros indicate their absence.

3.6.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

position: int or list Integer or list of integers denoting the position(s) in the sequence.

aminoacid: string or list String or list of strings indicating the amino acid(s) of interest.

3.6.2 Returns

arr: ndarray of shape (n_samples, ) or (n_samples, n_positions) Binary vector/matrix indicating position-specific
presence of amino acids.

3.6.3 Notes

The position argument is based on one-based indexing.

3.6.4 Examples

>>> from protlearn.features import posrich
>>> seqs = ['ARKLY', 'ERNLAPG', 'YRLQLLLY']
>>> pos_single = posrich(seqs, position=4, aminoacid='L')
>>> pos_single
array([1., 1., 0.])
>>> pos_multiple = posrich(seqs, position=[2,3,4], aminoacid=['R','N','L'])
array([[1., 0., 1.],

[1., 1., 1.],
[1., 0., 0.]])

3.7 motif

protlearn.features.motif(X, pattern, *, start=1, end=None)
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Sequence motifs.

This function returns a binary vector indicating the presence of a specified amino acid sequence motif.

3.7.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

pattern: string Represents the sequence motif. x –> any amino acid [XY] –> X or Y {X} –> any amino acid except
X

start: int, default=1 Determines the starting point of the amino acid sequence. This number is based on one-based
indexing.

end: int, default=None Determines the end point of the amino acid sequence. Similarly to start, this number is based
on one-based indexing.

3.7.2 Returns

arr: ndarray of shape (n_samples,) Binary vector indicating the presence of the motif in sequences.

3.7.3 Examples

>>> from protlearn.features import motif
>>> seqs = ['AARKYLL', 'LELCDPGPG', 'RAAANCDD']
>>> pattern1 = pattern = 'AAx[KC]'
>>> m1 = motif(seqs, pattern1)
>>> m1
array([1., 0., 1.])
>>> pattern2 = 'xxC[DA]xx{Y}'
>>> m2 = motif(seqs, pattern2)
>>> m2
array([0., 1., 0.])

Based on the example above, ‘pattern1’ is interpreted as follows: Two consecutive amino acids ‘A’, followed by any
amino acid, followed by either a ‘K’ or a ‘C’.

Likewise, pattern2 is interpreted as follows: Any two consecutive amino acids, followed by a ‘C’, followed by either
a ‘D’ or an ‘A’, followed by any two amino acids, followed by any amino acid except ‘Y’.

3.8 atc

protlearn.features.atc(X, *, method='relative', start=1, end=None)

Atomic and bond composition.

This function returns the sum of atomic and bond compositions for each amino acid sequence. The atomic features
are comprised of five atoms (C, H, N, O, and S), and the bond features are comprised of total bonds, single bonds, and
double bonds.

atc is calculated as follows:

𝑎𝑡𝑜𝑚𝑠(𝑖) =
𝑛𝑖

𝑁

3.8. atc 15
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where i denotes the type of atoms, ni is the total number of atoms of type i, and N is the total number of atoms in the
sequence.

𝑏𝑜𝑛𝑑𝑠(𝑗) = 𝑛𝑗

where j denotes the type of bond and nj is the total number of bonds of type j.

3.8.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

method: string, default=’relative’ ‘absolute’: absolute atomic composition ‘relative’: relative atomic composition

start: int, default=1 Determines the starting point of the amino acid sequence. This number is based on one-based
indexing.

end: int, default=None Determines the end point of the amino acid sequence. Similarly to start, this number is based
on one-based indexing.

3.8.2 Returns

arr_atoms: ndarray of shape (n_samples, 5) Array containing atomic compositions.

arr_bonds: ndarray of shape (n_samples, 3) Array containing bond compositions.

3.8.3 Notes

The method argument only applies to the atomic composition, not the bond composition.

3.8.4 References

• Kumar, R., Chaudhary, K., Singh Chauhan, J. et al. An in silico platform for predicting, screening and designing
of antihypertensive peptides. Sci Rep 5, 12512 (2015). https://doi.org/10.1038/srep12512

3.8.5 Examples

>>> from protlearn.features import atc
>>> seqs = ['ARKLY', 'EERKPGL', 'AAAAAALY']
>>> atoms, bonds = atc(seqs)
>>> atoms
array([[0.27522936, 0.5412844 , 0.08256881, 0.10091743, 0.],

[0.25547445, 0.53284672, 0.08029197, 0.13138686, 0.],
[0.26612903, 0.53225806, 0.06451613, 0.13709677, 0.]])

>>> bonds
array([[105., 96., 9.],

[131., 121., 10.],
[117., 106., 11.]])
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3.9 binary

protlearn.features.binary(X, *, padding=True, start=1, end=None)

Binary profile pattern.

This function returns the binary profile pattern for each amino acid sequence in the dataset. The output array is
therefore very sparse, as each amino acid is represented by a 20-dimensional vector with only one non-zero value.

3.9.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

padding: bool, default=True Pad sequences of unequal lengths with zeros at the posterior end.

start: int, default=1 Determines the starting point of the amino acid sequence. This number is based on one-based
indexing.

end: int, default=None Determines the end point of the amino acid sequence. Similarly to start, this number is based
on one-based indexing.

3.9.2 Returns

arr: ndarray of shape (n_samples, 20*seq_length) Array containing binary profile pattern.

3.9.3 Notes

This function is intended for proteins or peptides with equal lengths only.

3.9.4 References

• Ansari, H. R., & Raghava, G. P. (2010). Identification of conformational B-cell Epitopes in an antigen from its
primary sequence. Immunome research, 6, 6. https://doi.org/10.1186/1745-7580-6-6

• Chen Z, Chen Y-Z, Wang X-F, Wang C, Yan R-X, Zhang Z (2011) Prediction of Ubiquitination Sites by Using
the Composition of k-Spaced Amino Acid Pairs. PLoS ONE 6(7): e22930. https://doi.org/10.1371/journal.
pone.0022930

3.9.5 Examples

>>> from protlearn.features import binary
>>> seqs = ['ARKLY', 'EERKPGL']
>>> bpp = binary(seqs, padding=True)
>>> bpp
array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

(continues on next page)
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(continued from previous page)

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])

3.10 cksaap

protlearn.features.cksaap(X, *, k=1, remove_zero_cols=False, start=1, end=None)

Composition of k-spaced amino acid pairs.

This function returns the k-spaced amino acid pair composition of each sequence in the dataset. Since there are 20
natural amino acids, there are 400 possible amino acid pairs. The parameter ‘k’ represents the gap between the amino
acid pair. An example for k=1 would be AxY, where ‘x’ can be any amino acid. Similary, an example for k=2 would
be AxxY. If k=0, the function returns the dipeptide composition of each sequence.

3.10.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

lambda_: int, default=1 Counted rank (tier) of the correlation along an amino acid sequence.

k: int, default=1 Space between two amino acid pairs.

remove_zero_cols [bool, default=False] If true, columns containing only zeros will be deleted.

start: int, default=1 Determines the starting point of the amino acid sequence. This number is based on one-based
indexing.

end: int, default=None Determines the end point of the amino acid sequence. Similarly to start, this number is based
on one-based indexing.

3.10.2 Returns

arr: ndarray of shape (n_samples, 400) Array containing k-spaced amino acid pair composition.

patterns: list of length 400 Amino acid pairs with k gaps corresponding to columns in arr.

3.10.3 References

• Chen, K., Kurgan, L.A. & Ruan, J. Prediction of flexible/rigid regions from protein sequences using k-spaced
amino acid pairs. BMC Struct Biol 7, 25 (2007). https://doi.org/10.1186/1472-6807-7-25

18 Chapter 3. Feature Extraction
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3.10.4 Examples

>>> from protlearn.features import cksaap
>>> seqs = ['ARKLY', 'EERKPGL', 'AAAAAALY']
>>> ck, pairs = cksaap(seqs, remove_zero_cols=True)
>>> ck
array([[0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0],

[0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1],
[4, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0]])

>>> pairs
['A.A', 'A.K', 'A.L', 'A.Y', 'E.K', 'E.R', 'K.G', 'K.Y', 'P.L', 'R.L', 'R.P']
>>> ck2, pairs2 = cksaap(seqs, k=2, remove_zero_cols=True)
>>> ck2
array([[0, 1, 0, 0, 0, 0, 0, 1],

[0, 0, 0, 1, 1, 1, 1, 0],
[3, 1, 1, 0, 0, 0, 0, 0]])

>>> pairs2
['A..A', 'A..L', 'A..Y', 'E..K', 'E..P', 'K..L', 'R..G', 'R..Y']

3.11 ctd

protlearn.features.ctd(X, *, start=1, end=None)

Conjoint triad descriptors.

These descriptors were initially developed to model protein-protein interactions. Amino acids can be grouped into
7 different classes based on their dipoles and side chain volumes, which reflect their electrostatic and hydrophobic
interactions.

1 Dipole Scale (Debye): , Dipole < 1.0; +, 1.0 < Dipole < 2.0; ++, 2.0 < Dipole < 3.0; +++, Dipole > 3.0; +++, Dipole
> 3.0 with opposite orientation.
2 Volume Scale (A3): , Volume < 50; +, Volume > 50.
3 Cys is separated from class 3 because of its ability to form disulfide bonds.

After grouping, these class triads are computed and normalized as follows:

𝑑(𝑖) =
𝑓𝑖 −𝑚𝑖𝑛{𝑓1, 𝑓2, ..., 𝑓343}
𝑚𝑎𝑥{𝑓1, 𝑓2, ..., 𝑓343}

where i corresponds to the CTD group and f i is the frequency of group i in the sequence.
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3.11.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

start: int, default=1 Determines the starting point of the amino acid sequence. This number is based on one-based
indexing.

end: int, default=None Determines the end point of the amino acid sequence. Similarly to start, this number is based
on one-based indexing.

3.11.2 Returns

arr: ndarray of shape (n_samples, 343) Array containing conjoint triad descriptors.

ctd_list: list of length 343 Unique class triads corresponding to columns in arr.

3.11.3 References

• Shen J, Zhang J, Luo X, Zhu W, Yu K, Chen K, Li Y, Jiang H (2007) Predicting protein-protein interactions
based only on sequences information. Proc Natl Acad Sci USA 104: 4337 – 4341

3.11.4 Examples

>>> from protlearn.features import ctd
>>> seqs = ['ARKKLYLYL', 'EEEERKPGL']
>>> ctd_arr, ctd_desc = ctd(seqs)
>>> ctd_arr.shape
(2, 343)
>>> len(ctd_desc)
343

3.12 ctdc

protlearn.features.ctdc(X, *, start=1, end=None)

Composition/Transition/Distribution - Composition.

Amino acids are categorized into 3 groups based on their physicochemical properties. The properties used here include
hydrophobicity, normalized van der Waals volume, polarity, polarizability, charge, secondary structure, and solvent
accessibility. For hydrophobicity, we use seven different groupings based on different studies, which can all be found
in AAIndex1.
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After grouping, the frequency of each class will be calculated for each physicochemical property per sequence in the
dataset as follows:

𝑐(𝑖) =
𝑛𝑖

𝑁
𝑖 = 1, 2, 3

where ni denotes the frequency of group i in the sequence, and N is the total sequence length.

For instance, the sequence ‘ARKLY’ translates to ‘23311’ with respect to polarity groups. Thus, for polarity, the
outcome will be P1 = 2/5, P2 = 1/5, and P3 = 2/5.

As there are 13 different properties and 3 groups for each, the total dimension of this descriptor is 39.

3.12.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

start: int, default=1 Determines the starting point of the amino acid sequence. This number is based on one-based
indexing.

end: int, default=None Determines the end point of the amino acid sequence. Similarly to start, this number is based
on one-based indexing.

3.12.2 Returns

arr: ndarray of shape (n_samples, 39) Array containing grouped composition of physicochemical properties.

desc: list of length 39 Descriptor properties corresponding to columns in arr.

3.12. ctdc 21



protlearn

3.12.3 References

• Dubchak, I., Muchnik, I., Holbrook, S. R. & Kim, S.-H. Prediction of protein folding class using global descrip-
tion of amino acid sequence. Proceedings of the National Academy of Sciences 92, 8700–8704 (1995).

• Dubchak, I., Muchnik, I., Mayor, C., Dralyuk, I. & Kim, S.-H. Recognition of a protein fold in the context of
the scop classification. Proteins: Structure, Function, and Bioinformatics 35, 401–407 (1999).

3.12.4 Examples

>>> from protlearn.features import ctdc
>>> seqs = ['ARKLY', 'EERKPGL']
>>> c, desc = ctdc(seqs)
>>> c
array([[0. , 0.6 , 0.4 , 0.4 , 0.6 ,

0. , 0.6 , 0.2 , 0.2 , 0.4 ,
0. , 0.6 , 0.2 , 0.4 , 0.4 ,
0.4 , 0.4 , 0.2 , 0.4 , 0.2 ,
0.4 , 0.2 , 0.2 , 0.6 , 0.4 ,
0.2 , 0.4 , 0.2 , 0.2 , 0.6 ,
0.4 , 0.6 , 0. , 0.8 , 0.2 ,
0. , 0.4 , 0.4 , 0.2 ],

[0.42857143, 0.28571429, 0.28571429, 0.85714286, 0.14285714,
0. , 0.71428571, 0.14285714, 0.14285714, 0.57142857,
0.28571429, 0.14285714, 0.57142857, 0.28571429, 0.14285714,
0.57142857, 0.28571429, 0.14285714, 0.57142857, 0.14285714,
0.28571429, 0.28571429, 0.42857143, 0.28571429, 0.14285714,
0.28571429, 0.57142857, 0.14285714, 0.57142857, 0.28571429,
0.28571429, 0.42857143, 0.28571429, 0.71428571, 0. ,
0.28571429, 0.28571429, 0.57142857, 0.14285714]])

>>> desc
['Hydrophobicity_ARGP820101-G1',
'Hydrophobicity_ARGP820101-G2',
'Hydrophobicity_ARGP820101-G3',
'Hydrophobicity_CASG920101-G1',
'Hydrophobicity_CASG920101-G2',
'Hydrophobicity_CASG920101-G3',
'Hydrophobicity_ENGD860101-G1',
'Hydrophobicity_ENGD860101-G2',
'Hydrophobicity_ENGD860101-G3',
'Hydrophobicity_FASG890101-G1',
'Hydrophobicity_FASG890101-G2',
'Hydrophobicity_FASG890101-G3',
'Hydrophobicity_PONP930101-G1',
'Hydrophobicity_PONP930101-G2',
'Hydrophobicity_PONP930101-G3',
'Hydrophobicity_PRAM900101-G1',
'Hydrophobicity_PRAM900101-G2',
'Hydrophobicity_PRAM900101-G3',
'Hydrophobicity_ZIMJ680101-G1',
'Hydrophobicity_ZIMJ680101-G2',
'Hydrophobicity_ZIMJ680101-G3',
'Normalized van der Waals Volume-G1',
'Normalized van der Waals Volume-G2',
'Normalized van der Waals Volume-G3',
'Polarity-G1',

(continues on next page)
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'Polarity-G2',
'Polarity-G3',
'Polarizability-G1',
'Polarizability-G2',
'Polarizability-G3',
'Charge-G1',
'Charge-G2',
'Charge-G3',
'Secondary structure-G1',
'Secondary structure-G2',
'Secondary structure-G3',
'Solvent accessibility-G1',
'Solvent accessibility-G2',
'Solvent accessibility-G3']

3.13 ctdt

protlearn.features.ctdt(X, *, start=1, end=None)

Composition/Transition/Distribution - Transition

Amino acids are categorized into 3 groups based on their physicochemical properties. The properties used here include
hydrophobicity, normalized van der Waals volume, polarity, polarizability, charge, secondary structure, and solvent
accessibility. For hydrophobicity, we use seven different groupings based on different studies, which can all be found
in AAIndex1.

This descriptor computes the frequency of transitions between groups as follows:

𝑡(𝑖𝑗) =
𝑛𝑖𝑗 + 𝑛𝑗𝑖

𝑁 − 1
𝑖𝑗 = 12, 13, 23

where nij and nji denote the frequency of transitions from group i to j and j to i, respectively, in the sequence, and N is
the total sequence length.

For instance, if the encoded sequence is ‘32132223311311222222’, then there are 2 transitions from groups 1 to 2 and
2 to 1. Therefore, the descriptor for this particular group transition will be 2/19. Similarly, there are 3 transitions from
groups 2 to 3 and 3 to 2, so the descriptor for this transition is 3/19.

As with CTDC, the dimensionality of this feature is 39.

3.13.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

start: int, default=1 Determines the starting point of the amino acid sequence. This number is based on one-based
indexing.

end: int, default=None Determines the end point of the amino acid sequence. Similarly to start, this number is based
on one-based indexing.

3.13.2 Returns

arr: ndarray of shape (n_samples, 39) Array containing group transitions of physicochemical properties.

desc: list of length 39 Order of transition groups corresponding to columns in arr.
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3.13.3 References

• Dubchak, I., Muchnik, I., Holbrook, S. R. & Kim, S.-H. Prediction of protein folding class using global descrip-
tion of amino acid sequence. Proceedings of the National Academy of Sciences 92, 8700–8704 (1995).

• Dubchak, I., Muchnik, I., Mayor, C., Dralyuk, I. & Kim, S.-H. Recognition of a protein fold in the context of
the scop classification. Proteins: Structure, Function, and Bioinformatics 35, 401–407 (1999).

3.13.4 Examples

>>> from protlearn.features import ctdt
>>> seqs = ['ARKLY', 'EERKPGL']
>>> t, desc = ctdt(seqs)
>>> t
array([[0. , 0. , 0.25 , 0.5 , 0. ,

0. , 0.25 , 0.5 , 0. , 0. ,
0.5 , 0. , 0.25 , 0.25 , 0. ,
0.25 , 0.25 , 0.25 , 0.25 , 0. ,
0.25 , 0. , 0.25 , 0.5 , 0. ,
0.25 , 0.25 , 0. , 0.25 , 0.5 ,
0.5 , 0. , 0. , 0.25 , 0. ,
0. , 0.5 , 0.25 , 0. ],

[0.16666667, 0.33333333, 0.16666667, 0.16666667, 0. ,
0. , 0.16666667, 0. , 0.16666667, 0.16666667,
0. , 0.16666667, 0.5 , 0. , 0.16666667,
0.16666667, 0. , 0.16666667, 0.16666667, 0.33333333,
0.16666667, 0.16666667, 0.16666667, 0.16666667, 0.16666667,
0. , 0.16666667, 0.33333333, 0. , 0.33333333,
0.16666667, 0.16666667, 0. , 0. , 0.33333333,
0. , 0. , 0.16666667, 0.16666667]])

>>> desc
['Hydrophobicity_ARGP820101-T1221',
'Hydrophobicity_ARGP820101-T1331',
'Hydrophobicity_ARGP820101-T2332',
'Hydrophobicity_CASG920101-T1221',
'Hydrophobicity_CASG920101-T1331',
'Hydrophobicity_CASG920101-T2332',
'Hydrophobicity_ENGD860101-T1221',
'Hydrophobicity_ENGD860101-T1331',
'Hydrophobicity_ENGD860101-T2332',
'Hydrophobicity_FASG890101-T1221',
'Hydrophobicity_FASG890101-T1331',
'Hydrophobicity_FASG890101-T2332',
'Hydrophobicity_PONP930101-T1221',
'Hydrophobicity_PONP930101-T1331',
'Hydrophobicity_PONP930101-T2332',
'Hydrophobicity_PRAM900101-T1221',
'Hydrophobicity_PRAM900101-T1331',
'Hydrophobicity_PRAM900101-T2332',
'Hydrophobicity_ZIMJ680101-T1221',
'Hydrophobicity_ZIMJ680101-T1331',
'Hydrophobicity_ZIMJ680101-T2332',
'Normalized van der Waals Volume-T1221',
'Normalized van der Waals Volume-T1331',
'Normalized van der Waals Volume-T2332',

(continues on next page)

24 Chapter 3. Feature Extraction



protlearn

(continued from previous page)

'Polarity-T1221',
'Polarity-T1331',
'Polarity-T2332',
'Polarizability-T1221',
'Polarizability-T1331',
'Polarizability-T2332',
'Charge-T1221',
'Charge-T1331',
'Charge-T2332',
'Secondary structure-T1221',
'Secondary structure-T1331',
'Secondary structure-T2332',
'Solvent accessibility-T1221',
'Solvent accessibility-T1331',
'Solvent accessibility-T2332']

3.14 ctdd

protlearn.features.ctdd(X, *, start=1, end=None)

Composition/Transition/Distribution - Distribution

Amino acids are categorized into 3 groups based on their physicochemical properties. The properties used here include
hydrophobicity, normalized van der Waals volume, polarity, polarizability, charge, secondary structure, and solvent
accessibility. For hydrophobicity, we use seven different groupings based on different studies, which can all be found
in AAIndex1.

There are five distribution descriptors for each physicochemical property and they are the position percents in the
whole sequence for the first residue, 25% residues, 50% residues, 75% residues, and 100% residues for a certain
encoded class. For instance, if the encoded sequence is ‘32132223311311222222’, then there are 10 residues encoded
as 2. The positions for the first residue 2, the 2nd residue 2 (25% * 10 = 2), the 5th 2 residue (50% * 10 = 5), the 7th 2
(75% * 10 = 7) and the 10th residue 2 (100% * 10) in the encoded sequence are 2, 5, 15, 17, 20, so that the distribution
descriptors for 2 are: 10.0 (2/20 * 100), 25.0 (5/20 * 100), 75.0 (15/20 * 100), 85.0 (17/20 * 100), 100.0 (20/20 * 100).

Since there are 13 physicochemical properties, 3 groups (see ctdc), and 5 distribution descriptors, the total dimension-
ality of this feature is 195.

3.14.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

start: int, default=1 Determines the starting point of the amino acid sequence. This number is based on one-based
indexing.

end: int, default=None Determines the end point of the amino acid sequence. Similarly to start, this number is based
on one-based indexing.

3.14.2 Returns

arr: ndarray of shape (n_samples, 195) Array containing grouped distribution of physicochemical properties.

desc: list of length 195 Order of distribution groups corresponding to columns in arr.
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3.14.3 References

• Dubchak, I., Muchnik, I., Holbrook, S. R. & Kim, S.-H. Prediction of protein folding class using global descrip-
tion of amino acid sequence. Proceedings of the National Academy of Sciences 92, 8700–8704 (1995).

• Dubchak, I., Muchnik, I., Mayor, C., Dralyuk, I. & Kim, S.-H. Recognition of a protein fold in the context of
the scop classification. Proteins: Structure, Function, and Bioinformatics 35, 401–407 (1999).

3.14.4 Examples

>>> from protlearn.features import ctdc
>>> seqs = ['ARKLY', 'EERKPGL']
>>> d, desc = ctdd(seqs)
>>> d.shape
(2, 195)
>>> len(desc)
195

3.15 moreau_broto

protlearn.features.moreau_broto(X, *, d=1, properties=default, start=1, end=None)

Normalized Moreau-Broto autocorrelation based on AAIndex1.

Moreau-Broto autocorrelation descriptors are defined based on the distribution of AAIndex1-based amino acid prop-
erties along the sequence. All indices are standardized before computing the descriptors:

𝑃𝑖 =
𝑃𝑖 − 𝑃

𝜎

where Pi is the physicochemical property of the amino acid i, 𝑃 denotes the mean of the property of the 20 amino
acids, and 𝜎 denotes the standard deviation.

Then, the Moreau_Broto descriptors are computed as follows:

𝐴𝐶(𝑑) =

𝑁−𝑑∑︁
𝑛=1

𝑃𝑖𝑃𝑖+𝑑 𝑑 = 1, 2, ..., 𝑛𝑙𝑎𝑔

where d denotes the lag of the autocorrelation, Pi and Pi+d are the properties of the amino acids at positions i and i+d,
respectively, and nlag is the maximum value of the lag.

Finally, these descriptors are normalized:

𝐴𝑇𝑆(𝑑) =
𝐴𝐶(𝑑)

𝑁 − 𝑑
𝑑 = 1, 2, ..., 𝑛𝑙𝑎𝑔

where N denotes the total sequence length.

3.15.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

properties: list List of strings denoting AAIndex1 indices.

d: int, default=1 Represents the lag. Must be smaller than sequence length. Maximum: 30.
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start: int, default=1 Determines the starting point of the amino acid sequence. This number is based on one-based
indexing.

end: int, default=None Determines the end point of the amino acid sequence. Similarly to start, this number is based
on one-based indexing.

3.15.2 Returns

arr: ndarray of shape (n_samples, n_properties) Array containing Moreau-Broto autocorrelation descriptors.

3.15.3 References

• Moreau & Broto (1980), Autocorrelation of a topological structure: A new molecular descriptor, Nouv. J. Chim.
4, 359–360.

• Feng, ZP., Zhang, CT. (2000): Prediction of membrane protein types based on the hydrophobic index of amino
acids. J Protein Chem, 19: 262–275. 10.1023/A:1007091128394

• Lin, Z., Pan, XM. (2001): Accurate prediction of protein secondary structural content. J Protein Chem, 20:
217–220. 10.1023/A:1010967008838

• Xiao et al. (2015). protr/ProtrWeb: R package and web server for generating various numerical representation
schemes of protein sequences. Bioinformatics 31 (11), 1857-1859

3.15.4 Examples

>>> from protlearn.features import moreau_broto
>>> seqs = ['ARKLY', 'EERKPGL']
>>> mb = moreau_broto(seqs)
>>> mb
array([[ 0.20075105, -0.19610635, -0.22859247, 0.40627137, -0.19552707,

0.16803808, 0.11262517, 0.3817956 ],
[ 0.34693551, 0.55361789, 0.12660283, 0.37790326, 0.43905717,
0.00559139, -0.09331898, 0.36367721]])

3.16 moran

protlearn.features.moran(X, *, d=1, properties=default, start=1, end=None)

Moran’s I based on AAIndex1.

Moran’s I autocorrelation descriptors are defined based on the distribution of AAIndex1-based amino acid properties
along the sequence. All indices are standardized before computing the descriptors.

Moran’s I descriptors are computed as follows:

𝐼(𝑑) =
1

𝑁−𝑑

∑︀𝑁−𝑑
𝑖=1 (𝑃𝑖 − 𝑃

′
)(𝑃𝑖+𝑑 − 𝑃

′
)

1
𝑁

∑︀𝑁
𝑖=1(𝑃𝑖 − 𝑃

′
)2

𝑑 = 1, 2, ..., 30

where N, d, Pi , and Pi+d are the same as in the Moreau-Broto autocorrelation. 𝑃
′

is the considered property P along
the sequence, which is defined as follows:

𝑃
′

=

∑︀𝑁
𝑖=1 𝑃𝑖

𝑁
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3.16.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

properties: list List of strings denoting AAIndex1 indices.

d: int, default=1 Represents the lag. Must be smaller than sequence length. Maximum: 30.

start: int, default=1 Determines the starting point of the amino acid sequence. This number is based on one-based
indexing.

end: int, default=None Determines the end point of the amino acid sequence. Similarly to start, this number is based
on one-based indexing.

3.16.2 Returns

arr: ndarray of shape (n_samples, n_properties) Array containing Moran’s I autocorrelation descriptors.

3.16.3 References

• Moran, P. (1950). Notes on Continuous Stochastic Phenomena. Biometrika, 37(1/2), 17-23.
doi:10.2307/2332142

• Horne, DS. (1988): Prediction of protein helix content from an autocorrelation analysis of sequence hydropho-
bicities. Biopolymers 27, 451–477

• Li et al. (2007). Beyond Moran’s I: testing for spatial dependence based on the spatial autoregressive model.
Geogr. Anal. 39, 357–375.

• Xiao et al. (2015). protr/ProtrWeb: R package and web server for generating various numerical representation
schemes of protein sequences. Bioinformatics 31 (11), 1857-1859

3.16.4 Examples

>>> from protlearn.features import moran
>>> seqs = ['ARKLY', 'EERKPGL']
>>> moranI = moran(seqs)
>>> moranI
array([[ 0.40090094, -0.31240708, -0.44083728, 0.26720303, -0.45198768,

-0.14684112, -0.05212843, 0.33703981],
[-0.0588976 , -0.36033526, 0.13170834, 0.18317369, 0.3884609 ,
-0.00724234, -0.19231646, 0.61711506]])

3.17 geary

protlearn.features.geary(X, *, d=1, properties=default, start=1, end=None)

Geary’s C based on AAIndex1.

Geary’s C autocorrelation descriptors are defined based on the distribution of AAIndex1-based amino acid properties
along the sequence. All indices are standardized before computing the descriptors.
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Geary’s C descriptors are computed as follows:

𝐶(𝑑) =

1
2(𝑁−𝑑)

∑︀𝑁−𝑑
𝑖=1 (𝑃𝑖 − 𝑃𝑖+𝑑)2

1
𝑁−1

∑︀𝑁
𝑖=1(𝑃𝑖 − 𝑃

′
)2

𝑑 = 1, 2, ..., 30

where N, d, Pi , and Pi+d are the same as in the Moreau-Broto autocorrelation, and 𝑃
′

is the same as in Moran’s I.

3.17.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

properties: list List of strings denoting AAIndex1 indices.

d: int, default=1 Represents the lag. Must be smaller than sequence length. Maximum: 30.

start: int, default=1 Determines the starting point of the amino acid sequence. This number is based on one-based
indexing.

end: int, default=None Determines the end point of the amino acid sequence. Similarly to start, this number is based
on one-based indexing.

3.17.2 Returns

arr: ndarray of shape (n_samples, n_properties) Array containing Geary’s C autocorrelation descriptors.

3.17.3 References

• Geary, R. (1954). The Contiguity Ratio and Statistical Mapping. The Incorporated Statistician, 5(3), 115-146.
doi:10.2307/2986645

• Jeffers, J. (1973). A Basic Subroutine for Geary’s Contiguity Ratio. Journal of the Royal Statistical Society.
Series D (The Statistician), 22(4), 299-302. doi:10.2307/2986827

• Sokal, RR., Thomson, BA. (2006). Population structure inferred by local spatial autocorrelation: an example
from an Amerindian tribal population. Am J Phys Anthropol, 129: 121–131. 10.1002/ajpa.20250

• Xiao et al. (2015). protr/ProtrWeb: R package and web server for generating various numerical representation
schemes of protein sequences. Bioinformatics 31 (11), 1857-1859.

3.17.4 Examples

>>> from protlearn.features import geary
>>> seqs = ['ARKLY', 'EERKPGL']
>>> gearyC = geary(seqs)
>>> gearyC
array([[0.52746275, 1.12898944, 0.94222955, 0.39077186, 0.96444569,

0.66346012, 0.87481962, 0.32546227],
[0.65656058, 0.95397893, 0.87962853, 0.70972353, 0.65407555,
0.96823847, 1.01949384, 0.21073089]])
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3.18 paac

protlearn.features.paac(X, *, lambda_=30, w=.05, remove_zero_cols=False, start=1,
→˓end=None)

Pseudo amino acid composition.

Similar to the vanilla amino acid composition, this feature characterizes the protein mainly using a matrix of amino-
acid frequencies, which helps with dealing with proteins without significant sequence homology to other proteins.
However, additional information are also included in the matrix to represent some local features, such as correlation
between residues of a certain distance.

First, the original hydrophobicity, hydrophilicity, and side chain mass values are converted using the following equa-
tion:

𝑃 (𝑖) =
𝑃 𝑜(𝑖) − 1

20

∑︀20
𝑖=1 𝑃

𝑜(𝑖)√︁∑︀20
𝑖=1[𝑃

𝑜(𝑖)− 1
20

∑︀20
𝑖=1 𝑃 𝑜(𝑖)]2

20

where P(i) denotes the converted property (hydrophobicity, hydrophilicity, or side chain mass) of amino acid i, and
Po(i) denotes the original value of these properties.

Next, a correlation function is defined that averages the values of the three physicochemical properties:

Θ(𝐽𝑘, 𝐽𝑙) =
1

3
{[𝐻1(𝐽𝑘) −𝐻1(𝐽𝑙)]

2 + [𝐻2(𝐽𝑘) −𝐻2(𝐽𝑙)]
2 + [𝑀(𝐽𝑘) −𝑀(𝐽𝑙)]

2}

where H1 , H2 , and M refer to hydrophilicity, hydrophilicity, and side chain mass, respectively, and Jk and Jl denote
the amino acids at positions k and l.
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Then, a set of sequence-order-correlated factors are defined as follows:

𝜃1 =
1

𝑁 − 1

𝑁−1∑︁
𝑖=1

Θ(𝐽𝑘, 𝐽𝑘+1)

𝜃2 =
1

𝑁 − 2

𝑁−2∑︁
𝑖=1

Θ(𝐽𝑘, 𝐽𝑘+2)

...

𝜃𝜆 =
1

𝑁 − 𝜆

𝑁−𝜆∑︁
𝑖=1

Θ(𝐽𝑘, 𝐽𝑘+𝜆)

where 𝜆 is an integer parameter to be chosen and must be smaller than the sequence length N.

With f i being the normalized occurrence frequency of amino acid i in the sequence, a set of 20+ 𝜆 descriptors, called
the pseudo amino acid composition, can be defined as:

𝑋𝑐 =
𝑓𝑐∑︀20

𝑟=1 𝑓𝑟 + 𝑤
∑︀𝜆

𝑗=1 𝜃𝑗
, (1 < 𝑐 < 20)

𝑋𝑐 =
𝑤𝜃𝑐−20∑︀20

𝑟=1 𝑓𝑟 + 𝑤
∑︀𝜆

𝑗=1 𝜃𝑗
, (21 < 𝑐 < 20 + 𝜆)

where w is the weighting factor for the sequence-order effect and is set to 0.05 as suggested by Chou et al. (2001).

3.18.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

lambda_: int, default=30 Counted rank (tier) of the correlation along an amino acid sequence. This parameter has
to be smaller than the shortest sequence in the dataset.

w: float, default=.05 Weighting factor for the sequence-order effect.

remove_zero_cols [bool, default=False] If true, columns containing only zeros will be deleted.

start: int, default=1 Determines the starting point of the amino acid sequence. This number is based on one-based
indexing.

end: int, default=None Determines the end point of the amino acid sequence. Similarly to start, this number is based
on one-based indexing.

3.18.2 Returns

arr: ndarray of shape (n_samples, 20+lambda_) Array containing pseudo amino acid composition.

desc: list of length 20+lambda_ Order of amino acids and lambda values corresponding to columns in arr.

3.18.3 References

• Tanford C. Contribution of hydrophobic interactions to the stability of the globular conformation of proteins. J
Am Chem Soc. 1962;84:4240–4247.

• Hopp TP, Woods KR. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad
Sci U S A. 1981 Jun;78(6):3824-8. doi: 10.1073/pnas.78.6.3824. PMID: 6167991; PMCID: PMC319665.
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• Chou KC. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins. 2001; 43:
246- 255.

• Jain et al. TpPred: A Tool for Hierarchical Prediction of Transport Proteins Using Cluster of Neural Networks
and Sequence Derived Features. International Journal for Computational Biology (IJCB), 2012;1:28-36.

3.18.4 Examples

>>> from protlearn.features import paac
>>> seqs = ['ARKLY', 'EERKPGL']
>>> paac_comp, desc = paac(seqs, lambda_=3, remove_zero_cols=True)
>>> paac_comp
array([[0.62956037, 0. , 0. , 0.62956037, 0.62956037,

0. , 0.62956037, 0.62956037, 0.10830885, 0.16327632,
0.09885446],

[0. , 1.49423911, 0.74711955, 0.74711955, 0.74711955,
0.74711955, 0.74711955, 0. , 0.04009348, 0.08251201,
0.13027496]])

>>> desc
['A', 'E', 'G', 'K', 'L', 'P', 'R', 'Y', 'lambda1', 'lambda2', 'lambda3']

3.19 apaac

protlearn.features.apaac(X, *, lambda_=30, w=.05, remove_zero_cols=False, start=1,
→˓end=None)

Amphiphilic pseudo amino acid composition.

This feature has the same form as the vanilla amino acid composition, but contains much more information that is
related to the sequence order of a protein and the distribution of the hydrophobic and hydrophilic amino acids along
its chain.

Using H1 (i) and H2 (i) as defined above in the pseudo amino acid composition function, the correlation functions for
hydrophobicity and hydrophilicity can be computed as follows:

𝐻1
𝑖,𝑗 = 𝐻1(𝑖)𝐻1(𝑗)

𝐻2
𝑖,𝑗 = 𝐻2(𝑖)𝐻2(𝑗)

Next, sequence-order factors can be defined as:

𝜏1 =
1

𝑁 − 1

𝑁−1∑︁
𝑖=1

𝐻1
𝑖,𝑖+1

𝜏2 =
1

𝑁 − 1

𝑁−1∑︁
𝑖=1

𝐻2
𝑖,𝑖+1

𝜏3 =
1

𝑁 − 2

𝑁−2∑︁
𝑖=1

𝐻1
𝑖,𝑖+2

𝜏4 =
1

𝑁 − 2

𝑁−2∑︁
𝑖=1

𝐻2
𝑖,𝑖+2
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...

𝜏2𝜆−1 =
1

𝑁 − 𝜆

𝑁−𝜆∑︁
𝑖=1

𝐻1
𝑖,𝑖+𝜆

𝜏2𝜆 =
1

𝑁 − 𝜆

𝑁−𝜆∑︁
𝑖=1

𝐻2
𝑖,𝑖+𝜆

Finally, a set of descriptors, called amphiphilic pseudo amino acid composition, is defined as follows:

𝑃𝑐 =
𝑓𝑐∑︀20

𝑟=1 𝑓𝑟 + 𝑤
∑︀2𝜆

𝑗=1 𝜏𝑗
, (1 < 𝑐 < 20)

𝑃𝑐 =
𝑤𝜏𝑢∑︀20

𝑟=1 𝑓𝑟 + 𝑤
∑︀2𝜆

𝑗=1 𝜏𝑗
, (21 < 𝑐 < 20 + 2𝜆)

where w is the weighting factor, which is set to 0.05.

3.19.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

lambda_: int, default=30 Counted rank (tier) of the correlation along an amino acid sequence. This parameter has
to be smaller than the shortest sequence in the dataset.

w: float, default=.05 Weighting factor for the sequence-order effect.

remove_zero_cols [bool, default=False] If true, columns containing only zeros will be deleted.

start: int, default=1 Determines the starting point of the amino acid sequence. This number is based on one-based
indexing.

end: int, default=None Determines the end point of the amino acid sequence. Similarly to start, this number is based
on one-based indexing.

3.19.2 Returns

arr: ndarray of shape (n_samples, 20+2*lambda_) Array containing amphiphilic pseudo amino acid composition.

desc: list of length 20+2*lambda_ Order of amino acids and lambda values corresponding to columns in arr.

3.19.3 References

• Tanford C. Contribution of hydrophobic interactions to the stability of the globular conformation of proteins. J
Am Chem Soc. 1962;84:4240–4247.

• Hopp TP, Woods KR. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad
Sci U S A. 1981 Jun;78(6):3824-8. doi: 10.1073/pnas.78.6.3824. PMID: 6167991; PMCID: PMC319665.

• Chou KC. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinfor-
matics. 2005 Jan 1;21(1):10-9. doi: 10.1093/bioinformatics/bth466. Epub 2004 Aug 12. PMID: 15308540.

• Jain et al. TpPred: A Tool for Hierarchical Prediction of Transport Proteins Using Cluster of Neural Networks
and Sequence Derived Features. International Journal for Computational Biology (IJCB), 2012;1:28-36.
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3.19.4 Examples

>>> from protlearn.features import apaac
>>> seqs = ['ARKLY', 'EERKPGL']
>>> apaac_comp, desc = apaac(seqs, lambda_=3, remove_zero_cols=True)
>>> apaac_comp
array([[ 1.15705278e+00, 0.00000000e+00, 0.00000000e+00,

1.15705278e+00, 1.15705278e+00, 0.00000000e+00,
1.15705278e+00, 1.15705278e+00, 1.38909208e-02,
3.13346727e-02, -8.12700103e-02, -6.96352986e-02,
-1.82775274e-05, -5.13547885e-02],

[ 0.00000000e+00, 1.64484218e+00, 8.22421091e-01,
8.22421091e-01, 8.22421091e-01, 8.22421091e-01,
8.22421091e-01, 0.00000000e+00, 4.76440749e-02,
6.11246926e-02, 1.80650812e-02, 5.07150233e-02,
-1.93053341e-02, 1.93353709e-02]])

>>> desc
['A',
'E',
'G',
'K',
'L',
'P',
'R',
'Y',
'lambda_hphob1',
'lambda_hphil1',
'lambda_hphob2',
'lambda_hphil2',
'lambda_hphob3',
'lambda_hphil3']

3.20 socn

protlearn.features.socn(X, *, d=30, start=1, end=None)

Sequence-order-coupling number.

This feature is derived from the distance matrix between the 20 amino acids. Here, we use two different distance
matrices based on studies by Grantham and Schneider-Wrede, respectively.

The d-th rank sequence-order-coupling number is defined as follows:

𝜏𝑑 =

𝑁−𝑑∑︁
𝑖=1

(𝑑𝑖,𝑖+𝑑)2 𝑑 = 1, 2, 3, ..., 𝑛𝑙𝑎𝑔

where di,i+d is the value in a given distance matrix describing the distance between two amino acids at position i and
i+d, nlag refers to the maximum value of the lag (30), and N is the total sequence length.
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3.20.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

d: int, default=30 Represents the lag. Must be smaller than sequence length.

start: int, default=1 Determines the starting point of the amino acid sequence. This number is based on one-based
indexing.

end: int, default=None Determines the end point of the amino acid sequence. Similarly to start, this number is based
on one-based indexing.

3.20.2 Returns

arr_sw: ndarray of shape (n_samples, d) Array containing SOCN based on the Schneider-Wrede distance matrix.

arr_g: ndarray of shape (n_samples, d) Array containing SOCN based on the Grantham distance matrix.

3.20.3 References

• Grantham, R. (1974). Amino acid difference formula to help explain protein evolution. Science. 185 (4154):
862–864

• Schneider & Wrede (1994). The Rational Design of Amino Acid Sequences by Artifical Neural Networks and
Simulated Molecular Evolution: De Novo Design of an Idealized Leader Cleavge Site. Biophys Journal, 66,
335-344

• Chou,K.-C. (2000) Prediction of protein subcellar locations by incorporating quasi-sequence-order effect. Bio-
chemical and Biophysical Research Communications, 278, 477–483
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3.20.4 Examples

>>> from protlearn.features import socn
>>> seqs = ['ARKLY', 'EERKPGL']
>>> sw, g = socn(seqs, d=3)
>>> sw
array([1.85757 , 2.359385, 0.902717],

[1.138343, 1.64627 , 2.150641]])
>>> g
array([[25965., 28865., 15145.],

[35009., 42394., 38859.]])

3.21 qso

protlearn.features.qso(X, *, d=30, remove_zero_cols=False, start=1, end=None)

Quasi-sequence-order.

This feature is derived from the distance matrix between the 20 amino acids. Here, we use two different distance
matrices based on studies by Grantham and Schneider-Wrede, respectively.

For each amino acid i, a quasi-sequence-order descriptor can be computed as follows:

𝑋𝑖 =
𝑓𝑖∑︀20

𝑖=1 𝑓𝑖 + 𝑤
∑︀𝑛𝑙𝑎𝑔

𝑑=1 𝜏𝑑
, 𝑖 = 1, 2, ..., 20

where f i is the normalized occurrence of amino acid type i and w is a weighting factor, which is set to 0.1. nlag and 𝜏𝑑
are defined as in the sequence-order-coupling number function above.

The other 30 QSO descriptors are defined as follows:

𝑋𝑑 =
𝑤𝜏𝑑 − 20∑︀20

𝑖=1 𝑓𝑖 + 𝑤
∑︀𝑛𝑙𝑎𝑔

𝑑=1 𝜏𝑑
, 𝑑 = 21, 22, ..., 20 + 𝑛𝑙𝑎𝑔

3.21.1 Parameters

X: string, fasta, or a list thereof Dataset of amino acid sequences.

d: int, default=30 Represents the lag. Must be smaller than sequence length.

w: float, default=.1 Weighting factor for the sequence-order effect.

remove_zero_cols [bool, default=False] If true, columns containing only zeros will be deleted.

start: int, default=1 Determines the starting point of the amino acid sequence. This number is based on one-based
indexing.

end: int, default=None Determines the end point of the amino acid sequence. Similarly to start, this number is based
on one-based indexing.

3.21.2 Returns

arr_sw: ndarray of shape (n_samples, 20+d) Array containing QSO based on the Schneider-Wrede distance ma-
trix.

arr_g: ndarray of shape (n_samples, 20+d) Array containing QSO based on the Grantham distance matrix.
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desc: list of length 20+d Order of QSO descriptors corresponding to columns in arr_sw and arr_g.

3.21.3 References

• Grantham, R. (1974). Amino acid difference formula to help explain protein evolution. Science. 185 (4154):
862–864

• Schneider & Wrede (1994). The Rational Design of Amino Acid Sequences by Artifical Neural Networks and
Simulated Molecular Evolution: De Novo Design of an Idealized Leader Cleavge Site. Biophys Journal, 66,
335-344

• Chou,K.-C. (2000) Prediction of protein subcellar locations by incorporating quasi-sequence-order effect. Bio-
chemical and Biophysical Research Communications, 278, 477–483

3.21.4 Examples

>>> from protlearn.features import qso
>>> seqs = ['ARKLY', 'EERKPGL']
>>> sw, g, desc = qso(seqs, d=3, remove_zero_cols=True)
>>> sw
array([[0.66139001, 0. , 0. , 0.66139001, 0.66139001,

0. , 0.66139001, 0.66139001, 0.12285782, 0.15604737,
0.0597048 ],

[0. , 1.33911348, 0.66955674, 0.66955674, 0.66955674,
0.66955674, 0.66955674, 0. , 0.07621852, 0.11022712,
0.14399762]])

>>> g
array([[1.42887762e-04, 0.00000000e+00, 0.00000000e+00, 1.42887762e-04,

1.42887762e-04, 0.00000000e+00, 1.42887762e-04, 1.42887762e-04,
3.71008073e-01, 4.12445524e-01, 2.16403515e-01],

[0.00000000e+00, 1.72010458e-04, 8.60052291e-05, 8.60052291e-05,
8.60052291e-05, 8.60052291e-05, 8.60052291e-05, 0.00000000e+00,
3.01095707e-01, 3.64610568e-01, 3.34207720e-01]])

>>> desc
['A', 'E', 'G', 'K', 'L', 'P', 'R', 'Y', 'd1', 'd2', 'd3']

3.21. qso 37



protlearn

38 Chapter 3. Feature Extraction



CHAPTER 4

Dimensionality Reduction & Feature Selection

4.1 univariate_filter

protlearn.dimreduction.univariate_filter(X, y, *, method='f_test', top=10)

Univariate feature selection.

This function returns the features selected by univariate filtering after examining each feature individually and deter-
mining the strength of its relationship with the response variable. Here, three statistical tests can be chosen: f-test,
chi-squared, and mutual information.

4.1.1 Parameters

X: ndarray of shape (n_samples, n_features_pre) Feature matrix.

y: ndarray of shape (n_samples,) Response variables.

method: string, default=’f_test’ ‘f_test’ : ANOVA f-scores ‘chi2’ : Chi-squared statistics ‘mutual_info’ : Mutual
information

top: int, default=10 Number of top features to select.

4.1.2 Returns

arr: ndarray of shape (n_samples, top) Array containing the top features.

4.1.3 Examples
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>>> import numpy as np
>>> from protlearn.features import aac, aaindex1, ngram
>>> from protlearn.dimreduction import univariate_filter
>>> seqs = ['ARKLY', 'EERKPGL', 'PGPGEERNLY']
>>> labels = [1., 0., 0.]
>>> comp, _ = aac(seqs)
>>> aaind, _ = aaindex1(seqs)
>>> ng, _ = ngram(seqs)
>>> features = np.concatenate([comp, aaind, ng], axis=1)
>>> features.shape
(3, 575)
>>> reduced = univariate_filter(features, labels, method='f_test', top=10)
>>> reduced.shape
(3, 10)

4.2 correlation

protlearn.dimreduction.correlation(X, thres=.9)

Pearson correlation.

This function returns the features whose Pearson correlation with one another is below a specified threshold, thus
circumventing the problem of multicollinearity.

4.2.1 Parameters

X: ndarray of shape (n_samples, n_features_pre) Feature matrix.

thres: float, default=.9 Features whose correlation coefficient is higher than this threshold value will be removed.

4.2.2 Returns

arr: ndarray of shape (n_samples, n_features_post) Array containing features that correlate below the threshold
with one another.

4.2.3 Examples

>>> import numpy as np
>>> from protlearn.features import aac, aaindex1, ngram
>>> from protlearn.dimreduction import correlation
>>> seqs = ['ARKLY', 'EERKPGL', 'PGPGEERNLY']
>>> comp, _ = aac(seqs)
>>> aaind, _ = aaindex1(seqs)
>>> ng, _ = ngram(seqs)
>>> features = np.concatenate([comp, aaind, ng], axis=1)
>>> features.shape
(3, 575)
>>> reduced = correlation(features, thres=.99)
>>> reduced.shape
(3, 12)
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4.3 lasso

protlearn.dimreduction.lasso(X, y, C=1.0)

Lasso (L1) regularization.

Linear Model trained with L1 prior as regularizer.

4.3.1 Parameters

X: ndarray of shape (n_samples, n_features_pre) Feature matrix.

y: ndarray of shape (n_samples,) Response variables.

C: float, default=1.0 Inverse of regularization strength.

4.3.2 Returns

arr [ndarray of shape (n_samples, n_features_post)] Array containing lasso-reduced features.

4.3.3 Examples

>>> import numpy as np
>>> from protlearn.features import aac, aaindex1, ngram
>>> from protlearn.dimreduction import lasso
>>> seqs = ['ARKLY', 'EERKPGL', 'PGPGEERNLY']
>>> labels = [1., 0., 0.]
>>> comp, _ = aac(seqs)
>>> aaind, _ = aaindex1(seqs)
>>> ng, _ = ngram(seqs)
>>> features = np.concatenate([comp, aaind, ng], axis=1)
>>> features.shape
(3, 575)
>>> reduced = lasso(features, labels)
>>> reduced.shape
(3, 2)

4.4 tree_importance

protlearn.dimreduction.tree_importance(X, y, *, clf=None, method='random_forest',
→˓top=None, n_estimators=100, max_depth=None, importance_type='gain')

Decision tree feature importance.

This function returns the features that were selected as important by decision tree algorithms such as Random Forest
and XGBoost.

4.4.1 Parameters

X: ndarray of shape (n_samples, n_features_pre) Feature matrix.
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y: ndarray of shape (n_samples,) Response variables.

clf: object or None, default=None Customized classifier.

method: string, default=’random_forest’ ‘random_forest’ : Random Forest Classifier ‘xgboost’ : XGBoost Classi-
fier

top: int or None, default=None Number of top features to select.

n_iterations: int, default=3 Number of iterations.

n_estimators: int or None, default=2 Number of trees in the forest.

max_depth: int or None, default=None Maximum depth of the tree.

importance_type: string, default=’gain’ For XGBoost only: ‘gain’ : average gain of splits which use the feature
‘weight’ : number of times the a feature appears in the tree ‘cover’ : average coverage of splits which use the
feature ‘total_gain’ : Total gain ‘total_cover’ : Total cover

4.4.2 Returns

arr: ndarray of shape (n_samples, top) Array containing the top features based on tree-importance.

indices: ndarray Indices indicating the position of the selected feature in the input vector.

4.4.3 Examples

>>> import numpy as np
>>> from protlearn.features import aac, aaindex1, ngram
>>> from protlearn.dimreduction import tree_importance
>>> seqs = ['ARKLY', 'EERKPGL', 'PGPGEERNLY']
>>> labels = [1., 0., 0.]
>>> comp, _ = aac(seqs)
>>> aaind, _ = aaindex1(seqs)
>>> ng, _ = ngram(seqs)
>>> features = np.concatenate([comp, aaind, ng], axis=1)
>>> features.shape
(3, 575)
>>> reduced, indices = tree_importance(features, labels, top=10)
>>> reduced.shape
(3, 10)
>>> indices
array([249, 514, 4, 155, 182, 82, 214, 405, 140, 364])

4.5 sequential

protlearn.dimreduction.sequential(X, y, *, estimator, direction='forward', n_
→˓features=10, cv=0)

Sequential feature selection.

Sequential feature selection algorithms are a family of greedy search algorithms that are used to reduce an initial
d-dimensional feature space to a k-dimensional feature subspace where k < d. These algorithms remove or add one
feature at a time based on the classifier performance until a feature subset of the desired size k is reached.
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4.5.1 Parameters

X: ndarray of shape (n_samples, n_features_pre) Feature matrix.

y: labels, ndarray of shape (n_samples,) Response variables.

estimator: object Classifier - must include coef_ or feature_importances_ attribute.

direction: string, default=’forward’ Direction of sequential model, can be ‘forward’ or ‘backward’.

n_features: int, default=None Number of features to select.

cv: int, default=0 Number of cross-validation steps.

4.5.2 Returns

arr: ndarray of shape (n_samples, n_features) Array containing features selected by the sequential models.

4.5.3 Examples

>>> import numpy as np
>>> from sklearn.ensemble import RandomForestClassifier
>>> from protlearn.features import aac, aaindex1, ngram
>>> from protlearn.dimreduction import sequential
>>> seqs = ['ARKLY', 'EERKPGL', 'PGPGEERNLY']
>>> labels = [1., 0., 0.]
>>> comp, _ = aac(seqs)
>>> aaind, _ = aaindex1(seqs)
>>> ng, _ = ngram(seqs)
>>> features = np.concatenate([comp, aaind, ng], axis=1)
>>> features.shape
(3, 575)
>>> rf = RandomForestClassifier()
>>> reduced = sequential(features, labels, rf, n_features=10)
>>> reduced.shape
(3, 10)

4.6 rfe

protlearn.dimreduction.rfe(X, y, *, estimator, n_features=None, step=1)

Recursive feature elimination.

This function selects features by recursively considering smaller and smaller feature subsets. First, the estimator
is trained on the initial feature matrix and the importance of each feature is obtained through a coef_ or a fea-
ture_importances_ attribute. Subsequently, the least important features are pruned from the current feature subset.
This is repeated recursively on the pruned subset until the desired number of features is eventually reached.

4.6.1 Parameters

X: ndarray of shape (n_samples, n_features_pre) Feature matrix.

y: labels, ndarray of shape (n_samples,) Response variables.
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estimator: object Classifier - must include coef_ or feature_importances_ attribute.

n_features: int or None, default=None Number of features to select. If None, half of the features are selected.

step: int, default=1 Number of features to remove at each iteration.

4.6.2 Returns

arr: ndarray of shape (n_samples, n_features) Array containing the RFE-selected features.

ranking: ndarray of shape (n_features_pre,) Ranking of the features (with 1 being the best).

4.6.3 Examples

>>> import numpy as np
>>> from sklearn.ensemble import RandomForestClassifier
>>> from protlearn.features import aac, aaindex1, ngram
>>> from protlearn.dimreduction import rfe
>>> seqs = ['ARKLY', 'EERKPGL', 'PGPGEERNLY']
>>> labels = [1., 0., 0.]
>>> comp, _ = aac(seqs)
>>> aaind, _ = aaindex1(seqs)
>>> ng, _ = ngram(seqs)
>>> features = np.concatenate([comp, aaind, ng], axis=1)
>>> features.shape
(3, 575)
>>> rf = RandomForestClassifier()
>>> reduced, _ = rfe(features, labels, rf, n_features=10, step=5)
>>> reduced.shape
(3, 10)

4.7 pca

protlearn.dimreduction.pca(X, *, thres=.9, whiten=False)

Principal component analysis.

PCA is defined as an orthogonal linear transformation that transforms the data to a new coordinate system such that
the greatest variance by some scalar projection of the data comes to lie on the first coordinate (called the first principal
component), the second greatest variance on the second coordinate, and so on.

4.7.1 Parameters

X: ndarray of shape (n_samples, n_features_pre) Feature matrix.

thres: float, default=.9 Specify the desired explained variance.

4.7.2 Returns

arr: ndarray of shape (n_samples, n_features_post) Array containing the PCA components comprising the speci-
fied variance.
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4.7.3 Notes

For the output to be meaningful, the number of samples should be larger than the number of features.

4.7.4 Examples

>>> from protlearn.dimreduction import pca
>>> features.shape #from a larger dataset (not shown here)
(1000, 575)
>>> reduced = pca(features, thres=.9)
(1000, 32)

4.8 lda

protlearn.dimreduction.lda(X, y, *, solver='svd', shrinkage=None, n_components=None)

Linear discriminant analysis.

This function reduces the dimensionality of the input by projecting it to the most discriminative directions.

4.8.1 Parameters

X: ndarray of shape (n_samples, n_features_pre) Feature matrix.

y: ndarray of shape (n_samples,) Response variables.

solver: string, default=’svd’ ‘svd’ : Singular value decomposition ‘lsqr’ : Least squares solution ‘eigen’ : Eigen-
value decomposition

shrinkage: string, float, or None, default=None Shrinkage parameter. None : no shrinkage ‘auto’ : automatic
shrinkage using the Ledoit-Wolf lemma float between 0 and 1: fixed shrinkage parameter

n_components: int or None, default=None Number of components for dimensionality reduction. This parameter
cannot be larger than min(n_features, n_classes - 1).

4.8.2 Returns

arr: ndarray of shape (n_samples, n_features_post) Array containing the LDA-transformed features.

4.8.3 Examples

>>> import numpy as np
>>> from protlearn.features import aac, aaindex1, ngram
>>> from protlearn.dimreduction import lda
>>> seqs = ['ARKLY', 'EERKPGL', 'PGPGEERNLY']
>>> labels = [1., 0., 0.]
>>> comp, _ = aac(seqs)
>>> aaind, _ = aaindex1(seqs)
>>> ng, _ = ngram(seqs)
>>> features = np.concatenate([comp, aaind, ng], axis=1)

(continues on next page)
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(continued from previous page)

>>> features.shape
(3, 575)
>>> reduced = lda(features, labels, n_components=1)
>>> reduced.shape
(3, 1)

4.9 tsne

protlearn.dimreduction.tsne(X, *, n_components=2, perplexity=30, prior_pca=True, pca_
→˓components=50)

t-distributed stochastic neighbor embedding.

t-SNE converts similarities between data points to joint probabilities and tries to minimize the Kullback-Leibler diver-
gence between the joint probabilities of the low-dimensional embedding and the high-dimensional data.

4.9.1 Parameters

X: ndarray of shape (n_samples, n_features_pre) Feature matrix.

n_components: int or None, default=2 Dimension of embedded space.

perplexity: int, default=30 Related to the number of nearest neighbors that is used in other manifold learning algo-
rithms. Should be between 5 and 50. Larger datasets require larger perplexity.

prior_pca: bool, default=True It is recommended to reduce dimensionality before running t-SNE to decrease com-
putation time and noise.

pca_components: int, default=50 Dimension of PCA-preprocessed data that will serve as input to t-SNE.

4.9.2 Returns

arr: ndarray of shape (n_samples, n_components) Array containing the t-SNE-transformed features.

4.9.3 Examples

>>> import numpy as np
>>> from protlearn.features import aac, aaindex1, ngram
>>> from protlearn.dimreduction import tsne
>>> seqs = ['ARKLY', 'EERKPGL', 'PGPGEERNLY']
>>> comp, _ = aac(seqs)
>>> aaind, _ = aaindex1(seqs)
>>> ng, _ = ngram(seqs)
>>> features = np.concatenate([comp, aaind, ng], axis=1)
>>> features.shape
(3, 575)
>>> reduced = tsne(features, pca_components=3)
>>> reduced.shape
(3, 2)
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CHAPTER 5

Contributing

This project is intended to be a community effort, and everyone is welcome to contribute.

The ways of contributing can be broadly divided into two categories:

• Reporting a bug

• Requesting a new feature

5.1 Reporting a bug

If you have found a bug in any of protlearn’s modules, please create an issue on Github.

We kindly ask you to provide the following information:

• Describe the bug

• Provide code/steps to reproduce the bug

• Describe the behavior you expected from the module

• State the Python and protlearn versions used

• Provide screenshots of the output (optional)

• Add additional context (optional)

5.2 Requesting a new feature

The amount of features extractable from amino acid sequences has been steadily increasing over the past years and
decades. If you come across a feature that you would like to see included in protlearn, please submit an issue on
Github.

If you do so, please provide the following information:

• State the module for which you would like to request a new feature
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• Describe the solution that you envision

• Describe alternatives you may have considered (optional)

• Additional context (optional)
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